Non-trivial cases Sphere–cylinder intersection
1 non-trivial cases
1.1 intersection consists of 2 closed curves
1.2 intersection single closed curve
1.3 limiting case
non-trivial cases
subtracting 2 equations given above gives
z
2
+
(
r
2
−
r
2
+
a
2
)
=
2
a
x
.
{\displaystyle z^{2}+(r^{2}-r^{2}+a^{2})=2ax.}
since
x
{\displaystyle x}
quadratic function of
z
{\displaystyle z}
, projection of intersection onto xz-plane section of orthogonal parabola; section due fact
−
r
<
x
<
r
{\displaystyle -r<x<r}
. vertex of parabola lies @ point
(
−
b
,
0
,
0
)
{\displaystyle (-b,0,0)}
, where
b
=
r
2
−
r
2
−
a
2
2
a
.
{\displaystyle b={\frac {r^{2}-r^{2}-a^{2}}{2a}}.}
intersection consists of 2 closed curves
if
r
>
r
+
a
{\displaystyle r>r+a}
, condition
x
<
r
{\displaystyle x<r}
cuts parabola 2 segments. in case, intersection of sphere , cylinder consists of 2 closed curves, mirror images of each other. projection in xy-plane circles of radius
r
{\displaystyle r}
.
each part of intersection can parametrized angle
ϕ
{\displaystyle \phi }
:
(
x
,
y
,
z
)
=
(
r
cos
ϕ
,
r
sin
ϕ
,
±
2
a
(
b
+
r
cos
ϕ
)
)
.
{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,\pm {\sqrt {2a(b+r\cos \phi )}}\right).}
the curves contain following extreme points:
(
−
r
,
0
,
±
r
2
−
(
r
+
a
)
2
)
;
(
0
,
±
r
,
±
r
2
−
(
r
−
a
)
(
r
+
a
)
)
;
(
+
r
,
0
,
±
r
2
−
(
r
−
a
)
2
)
.
{\displaystyle \left(-r,0,\pm {\sqrt {r^{2}-(r+a)^{2}}}\right);\quad \left(0,\pm r,\pm {\sqrt {r^{2}-(r-a)(r+a)}}\right);\quad \left(+r,0,\pm {\sqrt {r^{2}-(r-a)^{2}}}\right).}
intersection single closed curve
if
r
<
r
+
a
{\displaystyle r<r+a}
, intersection of sphere , cylinder consists of single closed curve. can described same parameter equation in previous section, angle
ϕ
{\displaystyle \phi }
must restricted
−
ϕ
0
<
ϕ
<
+
ϕ
0
{\displaystyle -\phi _{0}<\phi <+\phi _{0}}
,
cos
ϕ
0
=
−
b
/
r
{\displaystyle \cos \phi _{0}=-b/r}
.
the curve contains following extreme points:
(
−
b
,
±
r
2
−
b
2
,
0
)
;
(
0
,
±
r
,
±
r
2
−
(
r
−
a
)
(
r
+
a
)
)
;
(
+
r
,
0
,
±
r
2
−
(
r
−
a
)
2
)
.
{\displaystyle \left(-b,\pm {\sqrt {r^{2}-b^{2}}},0\right);\quad \left(0,\pm r,\pm {\sqrt {r^{2}-(r-a)(r+a)}}\right);\quad \left(+r,0,\pm {\sqrt {r^{2}-(r-a)^{2}}}\right).}
limiting case
viviani s curve intersection of sphere , cylinder
in case
r
=
r
+
a
{\displaystyle r=r+a}
, cylinder , sphere tangential each other @ point
(
r
,
0
,
0
)
{\displaystyle (r,0,0)}
. intersection resembles figure eight: closed curve intersects itself. above parametrization becomes
(
x
,
y
,
z
)
=
(
r
cos
ϕ
,
r
sin
ϕ
,
2
a
r
cos
ϕ
2
)
,
{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,2{\sqrt {ar}}\cos {\frac {\phi }{2}}\right),}
where
ϕ
{\displaystyle \phi }
goes through 2 full revolutions.
in special case
a
=
r
,
r
=
2
r
{\displaystyle a=r,r=2r}
, intersection known viviani s curve. parameter representation is
(
x
,
y
,
z
)
=
(
r
cos
ϕ
,
r
sin
ϕ
,
r
cos
ϕ
2
)
.
{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,r\cos {\frac {\phi }{2}}\right).}
Comments
Post a Comment