Cuttlefish optimization algorithm .28Eesa.2C Mohsin.2C Brifcani .26 Orman 2013.29 List of metaphor-based metaheuristics



the 6 cases of reflection used cuttlefish


the cuttlefish optimization algorithm population-based search algorithm inspired skin color changing behaviour of cuttlefish developed in 2013 has 2 global search , 2 local search.


the algorithm considers 2 main processes: reflection , visibility. reflection process simulates light reflection mechanism, while visibility simulates visibility of matching patterns. these 2 processes used search strategy find global optimal solution. formulation of finding new solution (newp) using reflection , visibility follows:



n
e
w
p
=
r
e
f
l
e
c
t
i
o
n
+
v
i
s
i
b
i
l
i
t
y


{\displaystyle newp=reflection+visibility}


cfa divide population 4 groups (g1, g2, g3 , g4). g1 algorithm applying case 1 , 2 (the interaction between chromatophores , iridophores) produce new solutions. these 2 cases used global search. g2, algorithm uses case 3 (iridophores reflection opaerator) , case 4 (the interaction between iridophores , chromatophores) produces new solutions) local search. while g3 interaction between leucophores , chromatophores (case 5) used produce solutions around best solution (local search). g4, case 6 (reflection operator of leucophores) used global search reflecting incoming light out modification. main step of cfa described follows:



equations used calculate reflection , visibility 4 groups described below:


case 1 , 2 g1:






r
e
f
l
e
c
t
i
o
n
[
j
]
=
r


g

1


[
j
]
.
p
o
i
n
t
s
[
j
]


{\displaystyle reflection[j]=r*g_{1}[j].points[j]}






v
i
s
i
b
i
l
i
t
y
[
j
]
=
v

(
b
e
s
t
.
p
o
i
n
t
s
[
j
]


g

1


[
i
]
.
p
o
i
n
t
s
[
j
]
)


{\displaystyle visibility[j]=v*(best.points[j]-g_{1}[i].points[j])}


case 3 , 4 g2:






r
e
f
l
e
c
t
i
o
n
[
j
]
=
r

b
e
s
t
.
p
o
i
n
t
s
[
j
]


{\displaystyle reflection[j]=r*best.points[j]}






v
i
s
i
b
i
l
i
t
y
[
j
]
=
v

(
b
e
s
t
.
p
o
i
n
t
s
[
j
]


g

2


[
i
]
.
p
o
i
n
t
s
[
j
]
)


{\displaystyle visibility[j]=v*(best.points[j]-g_{2}[i].points[j])}


case 5 g3:






r
e
f
l
e
c
t
i
o
n
[
j
]
=
r

b
e
s
t
.
p
o
i
n
t
s
[
j
]


{\displaystyle reflection[j]=r*best.points[j]}






v
i
s
i
b
i
l
i
t
y
[
j
]
=
v

(
b
e
s
t
.
p
o
i
n
t
s
[
j
]

a

v

b
e
s
t




{\displaystyle visibility[j]=v*(best.points[j]-av_{best}}


case 6 g4:






p
[
i
]
.
p
o
i
n
t
s
[
j
]
=
r
a
n
d
o
m

(
u
p
p
e
r
l
i
m
i
t

l
o
w
e
r
l
i
n
i
t
)
+
l
o
w
e
r
l
i
m
i
t
,
i
=
1
,
2
,
.
.
.
,
n
;
j
=
1
,
2
,
.
.
.
,
d


{\displaystyle p[i].points[j]=random*(upperlimit-lowerlinit)+lowerlimit,i=1,2,...,n;j=1,2,...,d}


where




g

1




{\displaystyle g_{1}}

,




g

2




{\displaystyle g_{2}}

group1 , group2, presents




i

t
h




{\displaystyle i^{th}}

element in g, j




j

t
h




{\displaystyle j^{th}}

point of




i

t
h




{\displaystyle i^{th}}

element in group g, best best solution ,



a

v

b
e
s
t




{\displaystyle av_{best}}

presents average value of best points. while r , v 2 random numbers produced around 0 such between (-1, 1), r represents degree of reflection, v represents visibility degree of final view of pattern, upperlimit , lowerlimit upper limit , lower limit of problem domain.








Comments

Popular posts from this blog

Prosodic bootstrapping Bootstrapping (linguistics)

Principal leitmotifs Music of The Lord of the Rings film series

List of masters Devon and Somerset Staghounds