Limiting case Sphere–cylinder intersection



viviani s curve intersection of sphere , cylinder


in case



r
=
r
+
a


{\displaystyle r=r+a}

, cylinder , sphere tangential each other @ point



(
r
,
0
,
0
)


{\displaystyle (r,0,0)}

. intersection resembles figure eight: closed curve intersects itself. above parametrization becomes







(
x
,
y
,
z
)
=

(
r
cos

ϕ
,
r
sin

ϕ
,
2


a
r


cos



ϕ
2


)

,


{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,2{\sqrt {ar}}\cos {\frac {\phi }{2}}\right),}



where



ϕ


{\displaystyle \phi }

goes through 2 full revolutions.


in special case



a
=
r
,
r
=
2
r


{\displaystyle a=r,r=2r}

, intersection known viviani s curve. parameter representation is







(
x
,
y
,
z
)
=

(
r
cos

ϕ
,
r
sin

ϕ
,
r
cos



ϕ
2


)

.


{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,r\cos {\frac {\phi }{2}}\right).}








Comments

Popular posts from this blog

Prosodic bootstrapping Bootstrapping (linguistics)

Principal leitmotifs Music of The Lord of the Rings film series

Particle swarm optimization .28Kennedy .26 Eberhart 1995.29 List of metaphor-based metaheuristics