Limiting case Sphere–cylinder intersection
viviani s curve intersection of sphere , cylinder
in case
r
=
r
+
a
{\displaystyle r=r+a}
, cylinder , sphere tangential each other @ point
(
r
,
0
,
0
)
{\displaystyle (r,0,0)}
. intersection resembles figure eight: closed curve intersects itself. above parametrization becomes
(
x
,
y
,
z
)
=
(
r
cos
ϕ
,
r
sin
ϕ
,
2
a
r
cos
ϕ
2
)
,
{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,2{\sqrt {ar}}\cos {\frac {\phi }{2}}\right),}
where
ϕ
{\displaystyle \phi }
goes through 2 full revolutions.
in special case
a
=
r
,
r
=
2
r
{\displaystyle a=r,r=2r}
, intersection known viviani s curve. parameter representation is
(
x
,
y
,
z
)
=
(
r
cos
ϕ
,
r
sin
ϕ
,
r
cos
ϕ
2
)
.
{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,r\cos {\frac {\phi }{2}}\right).}
Comments
Post a Comment