Non-trivial cases Sphere–cylinder intersection




1 non-trivial cases

1.1 intersection consists of 2 closed curves
1.2 intersection single closed curve
1.3 limiting case





non-trivial cases

subtracting 2 equations given above gives








z

2


+
(

r

2




r

2


+

a

2


)
=
2
a
x
.


{\displaystyle z^{2}+(r^{2}-r^{2}+a^{2})=2ax.}



since



x


{\displaystyle x}

quadratic function of



z


{\displaystyle z}

, projection of intersection onto xz-plane section of orthogonal parabola; section due fact




r
<
x
<
r


{\displaystyle -r<x<r}

. vertex of parabola lies @ point



(

b
,
0
,
0
)


{\displaystyle (-b,0,0)}

, where







b
=




r

2




r

2




a

2




2
a



.


{\displaystyle b={\frac {r^{2}-r^{2}-a^{2}}{2a}}.}



intersection consists of 2 closed curves

if



r
>
r
+
a


{\displaystyle r>r+a}

, condition



x
<
r


{\displaystyle x<r}

cuts parabola 2 segments. in case, intersection of sphere , cylinder consists of 2 closed curves, mirror images of each other. projection in xy-plane circles of radius



r


{\displaystyle r}

.


each part of intersection can parametrized angle



ϕ


{\displaystyle \phi }

:







(
x
,
y
,
z
)
=

(
r
cos

ϕ
,
r
sin

ϕ
,
±


2
a
(
b
+
r
cos

ϕ
)


)

.


{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,\pm {\sqrt {2a(b+r\cos \phi )}}\right).}



the curves contain following extreme points:








(

r
,
0
,
±



r

2



(
r
+
a

)

2




)

;


(
0
,
±
r
,
±



r

2



(
r

a
)
(
r
+
a
)


)

;


(
+
r
,
0
,
±



r

2



(
r

a

)

2




)

.


{\displaystyle \left(-r,0,\pm {\sqrt {r^{2}-(r+a)^{2}}}\right);\quad \left(0,\pm r,\pm {\sqrt {r^{2}-(r-a)(r+a)}}\right);\quad \left(+r,0,\pm {\sqrt {r^{2}-(r-a)^{2}}}\right).}



intersection single closed curve

if



r
<
r
+
a


{\displaystyle r<r+a}

, intersection of sphere , cylinder consists of single closed curve. can described same parameter equation in previous section, angle



ϕ


{\displaystyle \phi }

must restricted





ϕ

0


<
ϕ
<
+

ϕ

0




{\displaystyle -\phi _{0}<\phi <+\phi _{0}}

,



cos


ϕ

0


=

b

/

r


{\displaystyle \cos \phi _{0}=-b/r}

.


the curve contains following extreme points:








(

b
,
±



r

2




b

2




,
0
)

;


(
0
,
±
r
,
±



r

2



(
r

a
)
(
r
+
a
)


)

;


(
+
r
,
0
,
±



r

2



(
r

a

)

2




)

.


{\displaystyle \left(-b,\pm {\sqrt {r^{2}-b^{2}}},0\right);\quad \left(0,\pm r,\pm {\sqrt {r^{2}-(r-a)(r+a)}}\right);\quad \left(+r,0,\pm {\sqrt {r^{2}-(r-a)^{2}}}\right).}



limiting case

viviani s curve intersection of sphere , cylinder


in case



r
=
r
+
a


{\displaystyle r=r+a}

, cylinder , sphere tangential each other @ point



(
r
,
0
,
0
)


{\displaystyle (r,0,0)}

. intersection resembles figure eight: closed curve intersects itself. above parametrization becomes







(
x
,
y
,
z
)
=

(
r
cos

ϕ
,
r
sin

ϕ
,
2


a
r


cos



ϕ
2


)

,


{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,2{\sqrt {ar}}\cos {\frac {\phi }{2}}\right),}



where



ϕ


{\displaystyle \phi }

goes through 2 full revolutions.


in special case



a
=
r
,
r
=
2
r


{\displaystyle a=r,r=2r}

, intersection known viviani s curve. parameter representation is







(
x
,
y
,
z
)
=

(
r
cos

ϕ
,
r
sin

ϕ
,
r
cos



ϕ
2


)

.


{\displaystyle (x,y,z)=\left(r\cos \phi ,r\sin \phi ,r\cos {\frac {\phi }{2}}\right).}








Comments

Popular posts from this blog

Prosodic bootstrapping Bootstrapping (linguistics)

Principal leitmotifs Music of The Lord of the Rings film series

Particle swarm optimization .28Kennedy .26 Eberhart 1995.29 List of metaphor-based metaheuristics